基于机器学习的地质灾害易发性研究——以山东省平邑县为例
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Study on the Susceptibility of Geological Hazards Based on Machine Learning——Taking Pingyi County in Shandong Province as an Example
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    地质灾害的早期识别和易发生区域的监测是防灾减灾的重要工作。本文以山东省平邑县为研究区域,将GF1 WFV光学影像、ASTER GDEM地形数据和降水数据融合为多源异构数据,对比了TensorFlow算法、支持向量机和随机森林3种机器学习算法对地质灾害易发性区域的提取效果,提取了研究区2021—2024年同时期地质灾害易发性区域,认为TensorFlow算法、支持向量机和随机森林均能够较好的识别是滑坡易发生区域,其中TensorFlow算法相较于其他方法的分类精度较高,总体精度为82.33%,Kappa系数为0.82。2021—2024年,平邑县易发生地质灾害的区域面积占比为11.5%~12.5%,主要集中在研究区西北的蒙山大洼区、唐村水库南部和九间棚区域。研究成果可为地质灾害易发性区域提取算法的选择和地质灾害预防提供参考。

    Abstract:

    Early identification of geological disasters and monitoring of easy-happening areas are important work in disaster prevention and reduction. In this paper, taking Pingyi county in Shandong province as the study area, the GF 1 WFV optical image, ASTER GDEM terrain data and precipitation data are fused into multi-source heterogeneous data. The extraction effects of three machine learning algorithms, such as TensorFlow algorithm, support vector machine, and random forest in geological hazard easy-happening areas have been compared. Geological hazard easy-happening areas in the study area from 2021 to 2024 have been extracted. By using TensorFlow algorithm, support vector machine and random forest methods, landslide easy-happening areas can all identified well. compared to other methods, TensorFlow algorithm has a higher classification accuracy with an overall accuracy of 82.33% and a Kappa coefficient of 0.82. From 2021 to 2024, the proportion of geological hazard easy-happening areas in Pingyi county ranged from 11.5% to12.5%. The fluctuations are mainly concentrated in Mengshan Dawa area in the northwest of the study area, the southern part of Tangcun reservoir, and Jiujianpeng area. The research results can provide some references for the selection of extraction algorithms for geological hazard easy-happening areas and the prevention of geological hazards in Pingyi county in Shandong province.

    参考文献
    相似文献
    引证文献
引用本文

高洪军,卞宝文,王欣瑶.基于机器学习的地质灾害易发性研究——以山东省平邑县为例[J].山东国土资源,2025,41(7):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-22